Propulsion Technology Planning for Engine Health Management

Zane D. Gastineau, Ph.D.

Controls and Engine Health Management
Turbine Engine Division
Propulsion Directorate
Air Force Research Laboratory

Outline

- Introduction to AFRL/PR's Turbine Engine Technology Plans
- Affordability Metric
- Maintenance Cost Drivers
- VAATE Engine Health Management Vision
 - three levels of capability
- DoD EHM Ground Power Relevancy
- Summary

Turbine Engine S&T Plan Tri-Service/NASA/Industry Coordinated

Integrated High Performance Turbine Engine Technology (IHPTET)...Constant Life (F119)

- 2X Propulsion Capability
 - +100% Engine Thrust/Weight
 - -40% Fuel Burn
 - -35% Production & Maintenance Cost
- National HCF S&T Program

Versatile, Affordable, Advanced Turbine Engines

- 10X Propulsion Affordability (Capability / Cost)
 National Durability Program
 Maintenance Friendly Versatile Core
 Ultra-Intelligent Adaptive Engine
- Environmental Efficiencies
- Dev/Prod/Maint Cost Reduction Focus

TODAY

2002

1987

2005

2017

VAATE Focus Areas

Intelligent Engine -

High Performing, Damage Tolerant

- Adaptive Component Performance
- Integrated Propulsion & Power
- Real Time Life Tracking
- Proactive Health Management

Versatile Core -

Military/Civil Multi-Use, Maintenance-Friendly

- Innovative Engine Architecture
- Wide Flow / High Efficiency Components
- Hi Excess Horsepower Technology
- Reduced Combustion Emissions

Revolutionary Features:

- No Lubrication or Hydraulic System
- Fuel Efficient, Variable Cycle
- Reduced Noise & Combustion Emissions
- Self Contained Diagnostics, Boltless Assembly
- Robust: Tolerant to Variations
- Integrated Stealth Technologies

Durability -

Turbine Engine Readiness Issues

- High Cycle Fatigue (HCF) Protocol
- Other Robust Engine Protocol
- Validated Design Methods Through Testing

VAATE Goal Metric

New affordability metric established for VAATE

$$\frac{Cost \ Capability}{Index \ (CCI)} = \frac{Propulsion}{Capability/Cost \ Index} = \frac{Capability}{Cost} = \frac{(Thrust/Wt)/(SFC)}{(Cost)}$$

Where:

Cost ~ Σ (Development, Production, & Maintenance Cost)

Engine Technology

F119

Base

IHPTET

2X Capability

VAATE

10X Affordability

Propulsion System Affordability

Engine Health Management is targeted towards reducing this \$3.3B+ sustainment cost

Sustainment Cost Breakdown

Sustainment Cost =

Spares, Repair /
Replacement
Cost

Maintenance Man Hours per Maintenance Action (MMH/MA)

Mean Time Between
Unscheduled Removals
(MTBUR)

Mean Time Between
Scheduled Removals
(MTBSR)

Average Time On Wing (ATOW)

ATOW goal for F100's and F110's averages 450 hrs. On average, we only achieve an ATOW of 229 hrs*

*Source: CEMS Database

Maintenance Cost Objectives How EHM is going to help Sustainment Cost

-60% Maintenance Cost \$/EFH

Durability:

- 1) Double component life (MTBSR +100%)
 - Design methods/protocol& Failure mechanisms
 - Lifing Methods
 - Materials characterization
 - Validation testing
- 2) Reduce repair/replace costs (-30%)
 - Manufacturing Processes

Intelligent Engine (EHM):

- 1) Extend MTBUR (+75%)
 - Model based diagnostics
 - Information gathering & fusion
 - Active component control
 - Robust sensors/virtual sensors
 - Condition based performance
- 2) Reduce MMH/MA (-50%)
 - Improved inspections (on-wing)
 - Prognostic health management

Versatile Core:

- 1) Extend MTBUR (+25%)
 - Cooled cooling Air
 - Thermal Barrier Coatings
 - Advanced Materials
 - Magnetic Bearings
 - Electronic Actuation
- 2) Reduce repair/replace costs (-10%)
 - Ease-of-assembly
 - Parts commonality

All focus areas contribute to the 60% maintenance cost reduction; Intelligent Engine provides engine health management

VAATE EHM Mission Statement

Through integrated ground-based and on-board control, diagnostic, and prognostic systems, maximize engine time-on-wing while minimizing support cost without compromising performance and survivability; Provide flexible health management technologies that can be integrated into legacy, pipeline, and future propulsion

EHM Time-Phased Descriptors

VAATE Element Descriptions

Diagnostics

- Real Time Crack Detection
- Advanced Vibration Diagnostics
- Oil Condition Monitoring
- T41 & Emissions Sensors
- Bearing Health Sensor
- Advanced Inspection Capability

Maintenance Process Control

- Data Mining/Data Integration
- Autonomic Logistics & Training
- Comprehensive DataWarehouse
- Every Engine a Website

Prognostics

- Advanced Mission Analysis
- Data Trending and Diagnostics
- Physics Based Component Life Models
- Information Fusion/Knowledge
- Advanced Reasoning

Controls

- Electric Actuation
- Active Component Control
- Model Based & Nonlinear
- •Hi Temp Electronics
- Continuous Life Tracking
- •Hi Temp Power Conversion

Four EHM Elements

Reduce Aaintenance Effort

- •Maintenance Process Control: Optimizing the Maintenance Process through Information Management.
- **Diagnostics:** Determining current health of parts (State Awareness/Life Usage).

Reduce Inscheduled Removals

- •Prognostics: Predicting when a part will fail (Remaining Life) and how to delay or prevent its failure (Life Extension).
- •Active Control: Closed loop engine feedback to improve performance, extend life, and reduce maintenance actions.

DoD EHM Relevance to Ground Power

Commonality exists in three of four EHM elements:

Diagnostics: Determining current health of parts (State Awareness/Life Usage).

Prognostics: Predicting when a part will fail (Remaining Life) and how to delay or prevent its failure (Life Extension).

Active Control: Closed loop engine feedback to improve performance, extend life, and reduce maintenance actions.

Summary

 Pursuing Engine Health Management (EHM) S&T activities to reduce maintenance costs

Many EHM areas directly tie to DOE needs

Several near-term technology transition opportunities available

We would appreciate any feedback on our proposed plan